Limits on the Adaptive Security of Yao's Garbling

Chethan Kamath, Karen Klein?!, Krzysztof Pietrzak!, Daniel Wichs?

1 - IST Austria

2 - Northeastern University, NTT Research

S ‘T AUSTRIA Northeastern ® NTTResearch
) University

esearch Council

Background

Circuit C Input =
S
T o (]
-— \
é)
\ /

Background

Yao’s solution [Yao86]:

Circuit C Input =

(C, K) < Garble(C) Eval(C, 1) = C(r)

Security of Yao's Garbling

LP09: selective security proof (input known ahead of time)

= adaptive security via randomly guessing the input of length n:

SKE e-IND-CPA secure = Yao's scheme 2" - e-secure

Security of Yao's Garbling

LP09: selective security proof (input known ahead of time)

= adaptive security via randomly guessing the input of length n:

SKE e-IND-CPA secure = Yao's scheme 2" - e-secure

JW16: adaptive security proof for circuits of depth D:

SKE &-IND-CPA secure = Yao's scheme 2P - e-secure

Security of Yao's Garbling

LP09: selective security proof (input known ahead of time)

= adaptive security via randomly guessing the input of length n:

SKE e-IND-CPA secure = Yao's scheme 2" - e-secure

JW16: adaptive security proof for circuits of depth D:

SKE &-IND-CPA secure = Yao's scheme 2P - e-secure

Theorem (Our work)

Any black-box proof of adaptive indistinguishability for Yao's garbling
scheme for circuits with n-bit input, 1-bit output, and depth D < 2n from
an IND-CPA secure SKE incurs a security loss of 22(VD)

Discussion of our Results

Our results

@ only apply to Yao’s construction, we do not prove a separation of
garbled circuits from one-way functions

e HJO+16: adaptively secure garbling from one-way functions using
“somewhere equivocal” encryption
(online complexity increases with the pebble complexity of the circuit)

Discussion of our Results

Our results

@ only apply to Yao’s construction, we do not prove a separation of
garbled circuits from one-way functions
e HJO+16: adaptively secure garbling from one-way functions using
“somewhere equivocal” encryption
(online complexity increases with the pebble complexity of the circuit)

@ hold even for indistinguishability (a weaker security notion than
simulatability) and a variant of Yao (JW16) where the output map
is sent online

o AIKW13: Yao's original scheme is not adaptively simulatable (for
circuits with /arge output)

Yao's Garbling

Yao's Garbling

N/

N\

Encyo(Enc, o (k7))
Encyi(Enc o (/1))

Encyo(Enc, (k7))
Encyi(Enc, i (k7))

N

l{” \ kl

Yao's Garbling

KN\

N

Encpa(Enc (1)) Encya(Ene, (5 0))
Encyi(Enc, o (k'3))) Encyi(Enc, (k1))

\/

]‘,)() A”l

C ={0}gec, K ={K" k', /"1 ...} can be computed offline

Yao's Garbling

K N\E!

Enco(Enc, o (E/®)) Encpo(Enc, (k7))
Encyi(Enc, o (k'3))) Encyi(Enc, (k1))

C={ boeos K= {k° kL, 1011} can be computed offline
For v = (xy,@,...): o= (k™ /", ...)
Output mapping: f = {k" — 0,k* —1,...}

Yao's Garbling

]{70

N\

Encyo(Enc, (k7))
Encyi(Enc (/)

Encyo(Enc, (k%))
Encyi(Enc, (/1))

é :{ }gECa K: {k07k17 bl

, ...} can be computed offline

For v = (xy,@0,...): &= (k™ /% ...)

Output mapping: f = {k" — 0,k* —1,...}

Security Definition for Garbling

selective indistinguishability
(weaker than simulation-based security)

Zo, L1 u a

O,
—_—

Security Definition for Garbling

adaptive indistinguishability
(weaker than simulation-based security)

Proof ldea

Theorem (Our work)

Any black-box proof of adaptive indistinguishability for Yao’s garbling
scheme for circuits with n-bit input, 1-bit output, and depth D < 2n from
an IND-CPA secure SKE incurs a security loss of 22(vD)

Define oracles F and A such that
o F = (Gen, Enc, Dec) is an ideal SKE scheme

e A is an (inefficient) adversary breaking Yao's scheme, but “not too
helpful” in breaking F.

Proof Idea: The Adversary A

adaptive indistinguishability
(weaker than simulation-based security)

C:{0,1}" =0

c (e X o)

Zo, 1 uniformly random o

U V=0iff (C,1)) good w.rt. x

Proof Idea: The Adversary A

adaptive indistinguishability
(weaker than simulation-based security)

C:{0,1}" =0

c (e X o)

Zo, 1 uniformly random o

U V=0iff (C’, Zp) good w.r.t. xo

Proof Idea: The Adversary A

adaptive indistinguishability
(weaker than simulation-based security)

C:{0,1}" =0

p (e X o)

Zo, 1 uniformly random o

U V=0iff (C’, Zp) good w.r.t. xo

defined through some pebble game on graphs,
guarantees that A succeeds

Proof Idea: The good Predicate

Given (C,%p), A extracts a pebble configuration P on C:

o Check (via brute-force) each garbling table in C, if incorrect (w.r.t.
Xp, X0) assign a pebble.

Proof Idea: The good Predicate

Given (C,%p), A extracts a pebble configuration P on C:

o Check (via brute-force) each garbling table in C, if incorrect (w.r.t.
Xp, X0) assign a pebble.

Consider the following pebble game:

@ In each step can place/remove a pebble on a node, if at least one of
its parents carries a pebble.

Proof Idea: The good Predicate

Given (C,%p), A extracts a pebble configuration P on C:

o Check (via brute-force) each garbling table in C, if incorrect (w.r.t.
Xp, X0) assign a pebble.

Consider the following pebble game:

@ In each step can place/remove a pebble on a node, if at least one of
its parents carries a pebble.

¥

Proof Idea: The good Predicate

Given (C,%p), A extracts a pebble configuration P on C:

o Check (via brute-force) each garbling table in C, if incorrect (w.r.t.
Xp, X0) assign a pebble.

Consider the following pebble game:

@ In each step can place/remove a pebble on a node, if at least one of
its parents carries a pebble.

¥

Proof Idea: The good Predicate

Given (C,%p), A extracts a pebble configuration P on C:

o Check (via brute-force) each garbling table in C, if incorrect (w.r.t.
Xp, X0) assign a pebble.

Consider the following pebble game:

@ In each step can place/remove a pebble on a node, if at least one of
its parents carries a pebble.

¥

Proof Idea: The good Predicate

Given (C,%p), A extracts a pebble configuration P on C:

o Check (via brute-force) each garbling table in C, if incorrect (w.r.t.
Xp, X0) assign a pebble.

Consider the following pebble game:

@ In each step can place/remove a pebble on a node, if at least one of
its parents carries a pebble.

¥

Proof Idea: The good Predicate

Given (C,%p), A extracts a pebble configuration P on C:

o Check (via brute-force) each garbling table in C, if incorrect (w.r.t.
Xp, X0) assign a pebble.

Consider the following pebble game:

@ In each step can place/remove a pebble on a node, if at least one of
its parents carries a pebble.

¥

Proof Idea: The good Predicate

Given (C,%p), A extracts a pebble configuration P on C:

o Check (via brute-force) each garbling table in C, if incorrect (w.r.t.
Xp, X0) assign a pebble.

Consider the following pebble game:

@ In each step can place/remove a pebble on a node, if at least one of
its parents carries a pebble.

¥

Proof Idea: The good Predicate

Given (C,%p), A extracts a pebble configuration P on C:

o Check (via brute-force) each garbling table in C, if incorrect (w.r.t.
Xp, X0) assign a pebble.

Consider the following pebble game:

@ In each step can place/remove a pebble on a node, if at least one of
its parents carries a pebble.

¥

Proof Idea: The good Predicate

Given (C,%p), A extracts a pebble configuration P on C:

o Check (via brute-force) each garbling table in C, if incorrect (w.r.t.
Xp, X0) assign a pebble.

Consider the following pebble game:

@ In each step can place/remove a pebble on a node, if at least one of
its parents carries a pebble.

¥

Proof Idea: The good Predicate

Given (C,%p), A extracts a pebble configuration P on C:

o Check (via brute-force) each garbling table in C, if incorrect (w.r.t.
Xp, X0) assign a pebble.

Consider the following pebble game:

@ In each step can place/remove a pebble on a node, if at least one of
its parents carries a pebble.

¥

Proof Idea: The good Predicate

Given (C,%p), A extracts a pebble configuration P on C:

o Check (via brute-force) each garbling table in C, if incorrect (w.r.t.
Xp, X0) assign a pebble.

Consider the following pebble game:

@ In each step can place/remove a pebble on a node, if at least one of
its parents carries a pebble.

¥

Proof Idea: The good Predicate

Given (C,%p), A extracts a pebble configuration P on C:

@ Check (via brute-force) each garbling table in C, if incorrect (w.r.t.
Xp, Xp) assign a pebble.

Consider the following pebble game:

@ In each step can place/remove a pebble on a node, if at least one of
its parents carries a pebble.

P is if it is reachable with less than d pebbles (where d = ©(D)).

Proof Idea: The good Predicate

Given (C,%p), A extracts a pebble configuration P on C:

@ Check (via brute-force) each garbling table in C, if incorrect (w.r.t.
Xp, Xp) assign a pebble.

Consider the following pebble game:

@ In each step can place/remove a pebble on a node, if at least one of
its parents carries a pebble.

Pis if it is reachable with less than d pebbles (where d = ©(D)).

Lemma (A breaks Yao's scheme)

For appropriately chosen circuit C with high pebble complexity:
0 =Py + A(C, %) and Py + A(C, %) bad.

Proof Idea: A is “not too useful”

Alc*]: punctured adversary, IND-CPA challenge ciphertext ¢* hardcoded
and never decrypted

— not useful for any reduction.

Proof Idea: A is “not too useful”

Alc*]: punctured adversary, IND-CPA challenge ciphertext ¢* hardcoded
and never decrypted

— not useful for any reduction.

Can only distinguish A[c*] from A if 7 «+ A and P* < A[c*] bad.

Proof Idea: A is “not too useful”

Alc*]: punctured adversary, IND-CPA challenge ciphertext ¢* hardcoded
and never decrypted

— not useful for any reduction.

Can only distinguish A[c*] from A if 7 + A and P* <+ A[c*] bad.

and P* differ in at most one pebbling step. \

— 7 contains d — 1 pebbles (by definition of good)

Proof Idea: A is “not too useful”

Alc*]: punctured adversary, IND-CPA challenge ciphertext ¢* hardcoded
and never decrypted

— not useful for any reduction.

Can only distinguish A[c*] from A if 7 + A and P* <+ A[c*] bad.

and P* differ in at most one pebbling step. \

— 7 contains d — 1 pebbles (by definition of good)

Lemma (Unlikely to reach a threshold configuration)

For any C the probability (over uniformly random xq) that there exists X,
such that and P* bad is small.

Proof Idea: Establishing the Lemma

Lemma (Unlikely to reach a threshold configuration)

For any C the probability (over uniformly random xq) that there exists X,
such that P good and P* bad is small.

Proof Idea: Establishing the Lemma

Lemma (Unlikely to reach a threshold configuration)

For any C the probability (over uniformly random xq) that there exists X,
such that and P* bad is small.

@ 77 contains many pebbles.

@ The reduction needs to correctly guess the output of pebbled gates
during evaluation C(xp).

Proof Idea: Establishing the Lemma

Lemma (Unlikely to reach a threshold configuration)

For any C the probability (over uniformly random xq) that there exists X,
such that and P* bad is small.

@ 77 contains many pebbles.
@ The reduction needs to correctly guess the output of pebbled gates
during evaluation C(xp).

To guarantee these properties, define C such that
- C has high pebbling complexity d = ©(D),
- contains a block of XOR gates, which maintains high entropy,
pebbles on this block correspond to guessing xg,

- contains subsequent AND gates as “control” mechanism,
pebbles on these gates mean that some guess was incorrect.

Proof Idea: The Circuit C

C?. .. tower graph of depth d

pd
W a9l
L kv

Proof Idea: The Circuit C

C?. .. tower graph of depth d
Implement gates as XOR
= C@(Xo) 75 C@(Xl)

Proof Idea: The Circuit C

C?. .. tower graph of depth d
Implement gates as XOR

= C%(x0) # C2(x) L
Vet 6%%?

AND gates are asymmetric w.r.t. input ?/ /

— use them as control gates: ?W?
17 i

X1

Proof Idea: The Circuit C

C?. .. tower graph of depth d
Implement gates as XOR

= C%(x0) # C2(x) L
Vet 6%%?

AND gates are asymmetric w.r.t. input ?/ /

— use them as control gates: ?W?
17 i

X1

Proof Idea: The Circuit C

C?. .. tower graph of depth d
Implement gates as XOR

= C%(x0) # C2(x) L
Vet 6%%?

AND gates are asymmetric w.r.t. input ?/ /?

— use them as control gates:
wrong input = AND pebbled ?W?
% !

X1

Proof Idea: The Circuit C

C?. .. tower graph of depth d
Implement gates as XOR
= C@(Xo) 75 C@(Xl)

AND gates are asymmetric w.r.t. input
— use them as control gates:
wrong input = AND pebbled

Pebbling lower bound: Placing a pebble
on a gate on layer d requires d pebbles
= (C, %) is bad w.rt. x
= A breaks the garbling scheme

Proof Idea: The Circuit C

AND gate for each input and XOR gate
= whenever a gate evaluates wrong:
corresponding AND gate pebbled

= bad configuration

Proof Idea: The Circuit C

AND gate for each input and XOR gate
= whenever a gate evaluates wrong:
corresponding AND gate pebbled

= bad configuration

Reduction needs to “place” d—1 pebbles,
and guess output of these gates correctly

Proof Idea: The Circuit C

AND gate for each input and XOR gate
= whenever a gate evaluates wrong:
corresponding AND gate pebbled

= bad configuration

Reduction needs to “place” d—1 pebbles,
and guess output of these gates correctly

For any subset S of d gates: 35’ C S,
|S’| = V/d: output bits of S’ independent
= Reduction succeeds w.p. < 1/2\/H

Proof Idea: The Circuit C

AND gate for each input and XOR gate
= whenever a gate evaluates wrong:
corresponding AND gate pebbled

= bad configuration

Reduction needs to “place” d—1 pebbles,
and guess output of these gates correctly

For any subset S of d gates: 35’ C S,
|S’| = V/d: output bits of S’ independent
= Reduction succeeds w.p. < 1/2\/H

Add binary tree of AND gates
=

Conclusion

SKE e-IND-CPA secure = Yao's scheme £’-secure
JW16: £/ < 20(P)
Our work: ¢’/e > 2VD) (D ...depth of the circuit)

More details and precise proofs: https://eprint.iacr.org/2021/945.

https://eprint.iacr.org/2021/945

Conclusion

SKE e-IND-CPA secure = Yao's scheme £’-secure
JW16: £/ < 20(P)
Our work: ¢’/e > 2VD) (D ...depth of the circuit)

More details and precise proofs: https://eprint.iacr.org/2021/945.

@ Is it possible to close the gap?

https://eprint.iacr.org/2021/945

Conclusion

SKE e-IND-CPA secure = Yao's scheme &'-secure

JW16: £/ < 20(P)
Our work: ¢’/e > 2VD) (D ...depth of the circuit)

More details and precise proofs: https://eprint.iacr.org/2021/945.

@ Is it possible to close the gap?

@ Can we obtain stronger lower bounds for Yao's original construction,
where the output mapping is sent in the offline phase?
(AIKW13: lower bound for simulatability for circuits w. large output,
KKP21: upper bound for indistinguishability for small treewidth.)

https://eprint.iacr.org/2021/945

Conclusion

SKE e-IND-CPA secure = Yao's scheme &'-secure

JW16: £/ < 20(P)
Our work: ¢’/e > 2VD) (D ...depth of the circuit)

More details and precise proofs: https://eprint.iacr.org/2021/945.

@ Is it possible to close the gap?

@ Can we obtain stronger lower bounds for Yao's original construction,
where the output mapping is sent in the offline phase?
(AIKW13: lower bound for simulatability for circuits w. large output,
KKP21: upper bound for indistinguishability for small treewidth.)

@ Can we turn this lower bound into a counter example? Under which
assumptions?

https://eprint.iacr.org/2021/945

Conclusion

SKE e-IND-CPA secure = Yao's scheme &'-secure

JW16: £/ < 20(P)
Our work: ¢’/e > 2VD) (D ...depth of the circuit)

More details and precise proofs: https://eprint.iacr.org/2021/945.

@ Is it possible to close the gap?

@ Can we obtain stronger lower bounds for Yao's original construction,
where the output mapping is sent in the offline phase?
(AIKW13: lower bound for simulatability for circuits w. large output,
KKP21: upper bound for indistinguishability for small treewidth.)

@ Can we turn this lower bound into a counter example? Under which
assumptions?

@ Can we use similar ideas for other constructions of garbling or even
other cryptographic primitives?

https://eprint.iacr.org/2021/945

