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Background

Yao’s solution [Yao86]:

Circuit C Input =

(C, K) < Garble(C) Eval(C, 1) = C(r)
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Theorem (Our work)
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Discussion of our Results

Our results

@ only apply to Yao’s construction, we do not prove a separation of
garbled circuits from one-way functions
e HJO+16: adaptively secure garbling from one-way functions using
“somewhere equivocal” encryption
(online complexity increases with the pebble complexity of the circuit)

@ hold even for indistinguishability (a weaker security notion than
simulatability) and a variant of Yao (JW16) where the output map
is sent online

o AIKW13: Yao's original scheme is not adaptively simulatable (for
circuits with /arge output)
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Security Definition for Garbling
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Proof ldea

Theorem (Our work)

Any black-box proof of adaptive indistinguishability for Yao’s garbling
scheme for circuits with n-bit input, 1-bit output, and depth D < 2n from
an IND-CPA secure SKE incurs a security loss of 22(vD)

Define oracles F and A such that
o F = (Gen, Enc, Dec) is an ideal SKE scheme

e A is an (inefficient) adversary breaking Yao's scheme, but “not too
helpful” in breaking F.
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Proof Idea: The Adversary A

adaptive indistinguishability
(weaker than simulation-based security)

C:{0,1}" =0

p (e X o)

Zo, 1 uniformly random o

U V=0iff (C’, Zp) good w.r.t. xo

defined through some pebble game on graphs,
guarantees that A succeeds
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Proof Idea: The good Predicate

Given (C,%p), A extracts a pebble configuration P on C:

@ Check (via brute-force) each garbling table in C, if incorrect (w.r.t.
Xp, Xp) assign a pebble.

Consider the following pebble game:

@ In each step can place/remove a pebble on a node, if at least one of
its parents carries a pebble.

Pis if it is reachable with less than d pebbles (where d = ©(D)).

Lemma (A breaks Yao's scheme)

For appropriately chosen circuit C with high pebble complexity:
0 =Py + A(C, %) and Py + A(C, %) bad.
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Proof Idea: Establishing the Lemma

Lemma (Unlikely to reach a threshold configuration)

For any C the probability (over uniformly random xq) that there exists X,
such that and P* bad is small.

@ 77 contains many pebbles.
@ The reduction needs to correctly guess the output of pebbled gates
during evaluation C(xp).

To guarantee these properties, define C such that
- C has high pebbling complexity d = ©(D),
- contains a block of XOR gates, which maintains high entropy,
pebbles on this block correspond to guessing xg,

- contains subsequent AND gates as “control” mechanism,
pebbles on these gates mean that some guess was incorrect.



Proof Idea: The Circuit C

C?. .. tower graph of depth d

pd
W a9l
L kv



Proof Idea: The Circuit C

C?. .. tower graph of depth d
Implement gates as XOR
= C@(Xo) 75 C@(Xl)



Proof Idea: The Circuit C

C?. .. tower graph of depth d
Implement gates as XOR

= C%(x0) # C2(x) L
Vet 6%%?

AND gates are asymmetric w.r.t. input ?/ /

— use them as control gates: ?W?
17 i

X1



Proof Idea: The Circuit C

C?. .. tower graph of depth d
Implement gates as XOR

= C%(x0) # C2(x) L
Vet 6%%?

AND gates are asymmetric w.r.t. input ?/ /

— use them as control gates: ?W?
17 i

X1



Proof Idea: The Circuit C

C?. .. tower graph of depth d
Implement gates as XOR

= C%(x0) # C2(x) L
Vet 6%%?

AND gates are asymmetric w.r.t. input ?/ /?

— use them as control gates:
wrong input = AND pebbled ?W?
% !

X1



Proof Idea: The Circuit C

C?. .. tower graph of depth d
Implement gates as XOR
= C@(Xo) 75 C@(Xl)

AND gates are asymmetric w.r.t. input
— use them as control gates:
wrong input = AND pebbled

Pebbling lower bound: Placing a pebble
on a gate on layer d requires d pebbles
= (C, %) is bad w.rt. x
= A breaks the garbling scheme
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Proof Idea: The Circuit C

AND gate for each input and XOR gate
= whenever a gate evaluates wrong:
corresponding AND gate pebbled

= bad configuration

Reduction needs to “place” d—1 pebbles,
and guess output of these gates correctly

For any subset S of d gates: 35’ C S,
|S’| = V/d: output bits of S’ independent
= Reduction succeeds w.p. < 1/2\/H

Add binary tree of AND gates
=
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@ Is it possible to close the gap?

@ Can we obtain stronger lower bounds for Yao's original construction,
where the output mapping is sent in the offline phase?
(AIKW13: lower bound for simulatability for circuits w. large output,
KKP21: upper bound for indistinguishability for small treewidth.)

@ Can we turn this lower bound into a counter example? Under which
assumptions?

@ Can we use similar ideas for other constructions of garbling or even
other cryptographic primitives?


https://eprint.iacr.org/2021/945

