
Limits on the Adaptive Security of Yao’s Garbling

Chethan Kamath, Karen Klein1, Krzysztof Pietrzak1, Daniel Wichs2

1 - IST Austria

2 - Northeastern University, NTT Research

Background

Background

Security of Yao’s Garbling

LP09: selective security proof (input known ahead of time)

⇒ adaptive security via randomly guessing the input of length n:

SKE ε-IND-CPA secure ⇒ Yao’s scheme 2n · ε-secure

JW16: adaptive security proof for circuits of depth D:

SKE ε-IND-CPA secure ⇒ Yao’s scheme 2D · ε-secure

Theorem (Our work)

Any black-box proof of adaptive indistinguishability for Yao’s garbling
scheme for circuits with n-bit input, 1-bit output, and depth D ≤ 2n from

an IND-CPA secure SKE incurs a security loss of 2Ω(
√
D).

Security of Yao’s Garbling

LP09: selective security proof (input known ahead of time)

⇒ adaptive security via randomly guessing the input of length n:

SKE ε-IND-CPA secure ⇒ Yao’s scheme 2n · ε-secure

JW16: adaptive security proof for circuits of depth D:

SKE ε-IND-CPA secure ⇒ Yao’s scheme 2D · ε-secure

Theorem (Our work)

Any black-box proof of adaptive indistinguishability for Yao’s garbling
scheme for circuits with n-bit input, 1-bit output, and depth D ≤ 2n from

an IND-CPA secure SKE incurs a security loss of 2Ω(
√
D).

Security of Yao’s Garbling

LP09: selective security proof (input known ahead of time)

⇒ adaptive security via randomly guessing the input of length n:

SKE ε-IND-CPA secure ⇒ Yao’s scheme 2n · ε-secure

JW16: adaptive security proof for circuits of depth D:

SKE ε-IND-CPA secure ⇒ Yao’s scheme 2D · ε-secure

Theorem (Our work)

Any black-box proof of adaptive indistinguishability for Yao’s garbling
scheme for circuits with n-bit input, 1-bit output, and depth D ≤ 2n from

an IND-CPA secure SKE incurs a security loss of 2Ω(
√
D).

Discussion of our Results

Our results

only apply to Yao’s construction, we do not prove a separation of
garbled circuits from one-way functions

HJO+16: adaptively secure garbling from one-way functions using
“somewhere equivocal” encryption
(online complexity increases with the pebble complexity of the circuit)

hold even for indistinguishability (a weaker security notion than
simulatability) and a variant of Yao (JW16) where the output map
is sent online

AIKW13: Yao’s original scheme is not adaptively simulatable (for
circuits with large output)

Discussion of our Results

Our results

only apply to Yao’s construction, we do not prove a separation of
garbled circuits from one-way functions

HJO+16: adaptively secure garbling from one-way functions using
“somewhere equivocal” encryption
(online complexity increases with the pebble complexity of the circuit)

hold even for indistinguishability (a weaker security notion than
simulatability) and a variant of Yao (JW16) where the output map
is sent online

AIKW13: Yao’s original scheme is not adaptively simulatable (for
circuits with large output)

Yao’s Garbling

Yao’s Garbling

Yao’s Garbling

Yao’s Garbling

Yao’s Garbling

Security Definition for Garbling

Security Definition for Garbling

Proof Idea

Theorem (Our work)

Any black-box proof of adaptive indistinguishability for Yao’s garbling
scheme for circuits with n-bit input, 1-bit output, and depth D ≤ 2n from

an IND-CPA secure SKE incurs a security loss of 2Ω(
√
D).

Define oracles F and A such that

F = (Gen,Enc,Dec) is an ideal SKE scheme

A is an (inefficient) adversary breaking Yao’s scheme, but “not too
helpful” in breaking F .

Proof Idea: The Adversary A

Proof Idea: The Adversary A

Proof Idea: The Adversary A

Proof Idea: The good Predicate

Given (C̃ , x̃b), A extracts a pebble configuration P on C :

Check (via brute-force) each garbling table in C̃ , if incorrect (w.r.t.
x̃b, x0) assign a pebble.

Consider the following pebble game:

In each step can place/remove a pebble on a node, if at least one of
its parents carries a pebble.

Proof Idea: The good Predicate

Given (C̃ , x̃b), A extracts a pebble configuration P on C :

Check (via brute-force) each garbling table in C̃ , if incorrect (w.r.t.
x̃b, x0) assign a pebble.

Consider the following pebble game:

In each step can place/remove a pebble on a node, if at least one of
its parents carries a pebble.

Proof Idea: The good Predicate

Given (C̃ , x̃b), A extracts a pebble configuration P on C :

Check (via brute-force) each garbling table in C̃ , if incorrect (w.r.t.
x̃b, x0) assign a pebble.

Consider the following pebble game:

In each step can place/remove a pebble on a node, if at least one of
its parents carries a pebble.

Proof Idea: The good Predicate

Given (C̃ , x̃b), A extracts a pebble configuration P on C :

Check (via brute-force) each garbling table in C̃ , if incorrect (w.r.t.
x̃b, x0) assign a pebble.

Consider the following pebble game:

In each step can place/remove a pebble on a node, if at least one of
its parents carries a pebble.

Proof Idea: The good Predicate

Given (C̃ , x̃b), A extracts a pebble configuration P on C :

Check (via brute-force) each garbling table in C̃ , if incorrect (w.r.t.
x̃b, x0) assign a pebble.

Consider the following pebble game:

In each step can place/remove a pebble on a node, if at least one of
its parents carries a pebble.

Proof Idea: The good Predicate

Given (C̃ , x̃b), A extracts a pebble configuration P on C :

Check (via brute-force) each garbling table in C̃ , if incorrect (w.r.t.
x̃b, x0) assign a pebble.

Consider the following pebble game:

In each step can place/remove a pebble on a node, if at least one of
its parents carries a pebble.

Proof Idea: The good Predicate

Given (C̃ , x̃b), A extracts a pebble configuration P on C :

Check (via brute-force) each garbling table in C̃ , if incorrect (w.r.t.
x̃b, x0) assign a pebble.

Consider the following pebble game:

In each step can place/remove a pebble on a node, if at least one of
its parents carries a pebble.

Proof Idea: The good Predicate

Given (C̃ , x̃b), A extracts a pebble configuration P on C :

Check (via brute-force) each garbling table in C̃ , if incorrect (w.r.t.
x̃b, x0) assign a pebble.

Consider the following pebble game:

In each step can place/remove a pebble on a node, if at least one of
its parents carries a pebble.

Proof Idea: The good Predicate

Given (C̃ , x̃b), A extracts a pebble configuration P on C :

Check (via brute-force) each garbling table in C̃ , if incorrect (w.r.t.
x̃b, x0) assign a pebble.

Consider the following pebble game:

In each step can place/remove a pebble on a node, if at least one of
its parents carries a pebble.

Proof Idea: The good Predicate

Given (C̃ , x̃b), A extracts a pebble configuration P on C :

Check (via brute-force) each garbling table in C̃ , if incorrect (w.r.t.
x̃b, x0) assign a pebble.

Consider the following pebble game:

In each step can place/remove a pebble on a node, if at least one of
its parents carries a pebble.

Proof Idea: The good Predicate

Given (C̃ , x̃b), A extracts a pebble configuration P on C :

Check (via brute-force) each garbling table in C̃ , if incorrect (w.r.t.
x̃b, x0) assign a pebble.

Consider the following pebble game:

In each step can place/remove a pebble on a node, if at least one of
its parents carries a pebble.

Proof Idea: The good Predicate

Given (C̃ , x̃b), A extracts a pebble configuration P on C :

Check (via brute-force) each garbling table in C̃ , if incorrect (w.r.t.
x̃b, x0) assign a pebble.

Consider the following pebble game:

In each step can place/remove a pebble on a node, if at least one of
its parents carries a pebble.

Proof Idea: The good Predicate

Given (C̃ , x̃b), A extracts a pebble configuration P on C :

Check (via brute-force) each garbling table in C̃ , if incorrect (w.r.t.
x̃b, x0) assign a pebble.

Consider the following pebble game:

In each step can place/remove a pebble on a node, if at least one of
its parents carries a pebble.

P is good if it is reachable with less than d pebbles (where d = Θ(D)).

Lemma (A breaks Yao’s scheme)

For appropriately chosen circuit C with high pebble complexity:
∅ = P0 ← A(C̃ , x̃0) good and P1 ← A(C̃ , x̃1) bad.

Proof Idea: The good Predicate

Given (C̃ , x̃b), A extracts a pebble configuration P on C :

Check (via brute-force) each garbling table in C̃ , if incorrect (w.r.t.
x̃b, x0) assign a pebble.

Consider the following pebble game:

In each step can place/remove a pebble on a node, if at least one of
its parents carries a pebble.

P is good if it is reachable with less than d pebbles (where d = Θ(D)).

Lemma (A breaks Yao’s scheme)

For appropriately chosen circuit C with high pebble complexity:
∅ = P0 ← A(C̃ , x̃0) good and P1 ← A(C̃ , x̃1) bad.

Proof Idea: A is “not too useful”

A[c∗]: punctured adversary, IND-CPA challenge ciphertext c∗ hardcoded
and never decrypted

→ not useful for any reduction.

Can only distinguish A[c∗] from A if P ← A good and P∗ ← A[c∗] bad.

Lemma

P and P∗ differ in at most one pebbling step.

→ P contains d − 1 pebbles (by definition of good)

Lemma (Unlikely to reach a threshold configuration)

For any C̃ the probability (over uniformly random x0) that there exists x̃b
such that P good and P∗ bad is small.

Proof Idea: A is “not too useful”

A[c∗]: punctured adversary, IND-CPA challenge ciphertext c∗ hardcoded
and never decrypted

→ not useful for any reduction.

Can only distinguish A[c∗] from A if P ← A good and P∗ ← A[c∗] bad.

Lemma

P and P∗ differ in at most one pebbling step.

→ P contains d − 1 pebbles (by definition of good)

Lemma (Unlikely to reach a threshold configuration)

For any C̃ the probability (over uniformly random x0) that there exists x̃b
such that P good and P∗ bad is small.

Proof Idea: A is “not too useful”

A[c∗]: punctured adversary, IND-CPA challenge ciphertext c∗ hardcoded
and never decrypted

→ not useful for any reduction.

Can only distinguish A[c∗] from A if P ← A good and P∗ ← A[c∗] bad.

Lemma

P and P∗ differ in at most one pebbling step.

→ P contains d − 1 pebbles (by definition of good)

Lemma (Unlikely to reach a threshold configuration)

For any C̃ the probability (over uniformly random x0) that there exists x̃b
such that P good and P∗ bad is small.

Proof Idea: A is “not too useful”

A[c∗]: punctured adversary, IND-CPA challenge ciphertext c∗ hardcoded
and never decrypted

→ not useful for any reduction.

Can only distinguish A[c∗] from A if P ← A good and P∗ ← A[c∗] bad.

Lemma

P and P∗ differ in at most one pebbling step.

→ P contains d − 1 pebbles (by definition of good)

Lemma (Unlikely to reach a threshold configuration)

For any C̃ the probability (over uniformly random x0) that there exists x̃b
such that P good and P∗ bad is small.

Proof Idea: Establishing the Lemma

Lemma (Unlikely to reach a threshold configuration)

For any C̃ the probability (over uniformly random x0) that there exists x̃b
such that P good and P∗ bad is small.

P contains many pebbles.

The reduction needs to correctly guess the output of pebbled gates
during evaluation C (x0).

To guarantee these properties, define C such that

- C has high pebbling complexity d = Θ(D),

- contains a block of XOR gates, which maintains high entropy,
pebbles on this block correspond to guessing x0,

- contains subsequent AND gates as “control” mechanism,
pebbles on these gates mean that some guess was incorrect.

Proof Idea: Establishing the Lemma

Lemma (Unlikely to reach a threshold configuration)

For any C̃ the probability (over uniformly random x0) that there exists x̃b
such that P good and P∗ bad is small.

P contains many pebbles.

The reduction needs to correctly guess the output of pebbled gates
during evaluation C (x0).

To guarantee these properties, define C such that

- C has high pebbling complexity d = Θ(D),

- contains a block of XOR gates, which maintains high entropy,
pebbles on this block correspond to guessing x0,

- contains subsequent AND gates as “control” mechanism,
pebbles on these gates mean that some guess was incorrect.

Proof Idea: Establishing the Lemma

Lemma (Unlikely to reach a threshold configuration)

For any C̃ the probability (over uniformly random x0) that there exists x̃b
such that P good and P∗ bad is small.

P contains many pebbles.

The reduction needs to correctly guess the output of pebbled gates
during evaluation C (x0).

To guarantee these properties, define C such that

- C has high pebbling complexity d = Θ(D),

- contains a block of XOR gates, which maintains high entropy,
pebbles on this block correspond to guessing x0,

- contains subsequent AND gates as “control” mechanism,
pebbles on these gates mean that some guess was incorrect.

Proof Idea: The Circuit C

C⊕. . . tower graph of depth d

Implement gates as XOR
⇒ C⊕(x0) 6= C⊕(x1)

AND gates are asymmetric w.r.t. input
→ use them as control gates:

wrong input ⇒ AND pebbled

Pebbling lower bound: Placing a pebble
on a gate on layer d requires d pebbles
⇒ (C̃ , x̃1) is bad w.r.t. x0

⇒ A breaks the garbling scheme

⊕ ⊕ ⊕ ⊕ ⊕ ⊕ ⊕

⊕ ⊕ ⊕ ⊕ ⊕ ⊕ ⊕

⊕ ⊕ ⊕ ⊕ ⊕ ⊕ ⊕

⊕ ⊕ ⊕ ⊕ ⊕ ⊕ ⊕

⊕ ⊕ ⊕ ⊕ ⊕ ⊕ ⊕

⊕ ⊕ ⊕ ⊕ ⊕ ⊕ ⊕

x1

∧

Proof Idea: The Circuit C

C⊕. . . tower graph of depth d
Implement gates as XOR
⇒ C⊕(x0) 6= C⊕(x1)

AND gates are asymmetric w.r.t. input
→ use them as control gates:

wrong input ⇒ AND pebbled

Pebbling lower bound: Placing a pebble
on a gate on layer d requires d pebbles
⇒ (C̃ , x̃1) is bad w.r.t. x0

⇒ A breaks the garbling scheme

⊕ ⊕ ⊕ ⊕ ⊕ ⊕ ⊕

⊕ ⊕ ⊕ ⊕ ⊕ ⊕ ⊕

⊕ ⊕ ⊕ ⊕ ⊕ ⊕ ⊕

⊕ ⊕ ⊕ ⊕ ⊕ ⊕ ⊕

⊕ ⊕ ⊕ ⊕ ⊕ ⊕ ⊕

⊕ ⊕ ⊕ ⊕ ⊕ ⊕ ⊕

x1

C⊕(x1)

∧

Proof Idea: The Circuit C

C⊕. . . tower graph of depth d
Implement gates as XOR
⇒ C⊕(x0) 6= C⊕(x1)

AND gates are asymmetric w.r.t. input
→ use them as control gates:

wrong input ⇒ AND pebbled

Pebbling lower bound: Placing a pebble
on a gate on layer d requires d pebbles
⇒ (C̃ , x̃1) is bad w.r.t. x0

⇒ A breaks the garbling scheme

⊕ ⊕ ⊕ ⊕ ⊕ ⊕ ⊕

⊕ ⊕ ⊕ ⊕ ⊕ ⊕ ⊕

⊕ ⊕ ⊕ ⊕ ⊕ ⊕ ⊕

⊕ ⊕ ⊕ ⊕ ⊕ ⊕ ⊕

⊕ ⊕ ⊕ ⊕ ⊕ ⊕ ⊕

⊕ ⊕ ⊕ ⊕ ⊕ ⊕ ⊕

x1

C⊕(x1)

∧

Proof Idea: The Circuit C

C⊕. . . tower graph of depth d
Implement gates as XOR
⇒ C⊕(x0) 6= C⊕(x1)

AND gates are asymmetric w.r.t. input
→ use them as control gates:

wrong input ⇒ AND pebbled

Pebbling lower bound: Placing a pebble
on a gate on layer d requires d pebbles
⇒ (C̃ , x̃1) is bad w.r.t. x0

⇒ A breaks the garbling scheme

⊕ ⊕ ⊕ ⊕ ⊕ ⊕ ⊕

⊕ ⊕ ⊕ ⊕ ⊕ ⊕ ⊕

⊕ ⊕ ⊕ ⊕ ⊕ ⊕ ⊕

⊕ ⊕ ⊕ ⊕ ⊕ ⊕ ⊕

⊕ ⊕ ⊕ ⊕ ⊕ ⊕ ⊕

⊕ ⊕ ⊕ ⊕ ⊕ ⊕ ⊕

x1

C⊕(x1)∧

Proof Idea: The Circuit C

C⊕. . . tower graph of depth d
Implement gates as XOR
⇒ C⊕(x0) 6= C⊕(x1)

AND gates are asymmetric w.r.t. input
→ use them as control gates:

wrong input ⇒ AND pebbled

Pebbling lower bound: Placing a pebble
on a gate on layer d requires d pebbles
⇒ (C̃ , x̃1) is bad w.r.t. x0

⇒ A breaks the garbling scheme

⊕ ⊕ ⊕ ⊕ ⊕ ⊕ ⊕

⊕ ⊕ ⊕ ⊕ ⊕ ⊕ ⊕

⊕ ⊕ ⊕ ⊕ ⊕ ⊕ ⊕

⊕ ⊕ ⊕ ⊕ ⊕ ⊕ ⊕

⊕ ⊕ ⊕ ⊕ ⊕ ⊕ ⊕

⊕ ⊕ ⊕ ⊕ ⊕ ⊕ ⊕

x1

C⊕(x1)∧

Proof Idea: The Circuit C

C⊕. . . tower graph of depth d
Implement gates as XOR
⇒ C⊕(x0) 6= C⊕(x1)

AND gates are asymmetric w.r.t. input
→ use them as control gates:

wrong input ⇒ AND pebbled

Pebbling lower bound: Placing a pebble
on a gate on layer d requires d pebbles
⇒ (C̃ , x̃1) is bad w.r.t. x0

⇒ A breaks the garbling scheme

⊕ ⊕ ⊕ ⊕ ⊕ ⊕ ⊕

⊕ ⊕ ⊕ ⊕ ⊕ ⊕ ⊕

⊕ ⊕ ⊕ ⊕ ⊕ ⊕ ⊕

⊕ ⊕ ⊕ ⊕ ⊕ ⊕ ⊕

⊕ ⊕ ⊕ ⊕ ⊕ ⊕ ⊕

⊕ ⊕ ⊕ ⊕ ⊕ ⊕ ⊕

x1

C⊕(x1)∧

Proof Idea: The Circuit C

AND gate for each input and XOR gate
⇒ whenever a gate evaluates wrong:

corresponding AND gate pebbled
⇒ bad configuration

Reduction needs to “place” d−1 pebbles,
and guess output of these gates correctly

For any subset S of d gates: ∃S ′ ⊂ S ,
|S ′| =

√
d : output bits of S ′ independent

⇒ Reduction succeeds w.p. ≤ 1/2
√
d

Add binary tree of AND gates
⇒ constant output 0

⊕ ⊕ ⊕ ⊕ ⊕ ⊕ ⊕

⊕ ⊕ ⊕ ⊕ ⊕ ⊕ ⊕

⊕ ⊕ ⊕ ⊕ ⊕ ⊕ ⊕

⊕ ⊕ ⊕ ⊕ ⊕ ⊕ ⊕

⊕ ⊕ ⊕ ⊕ ⊕ ⊕ ⊕

⊕ ⊕ ⊕ ⊕ ⊕ ⊕ ⊕

x1

∧∧ ∧ ∧ ∧ ∧ ∧

∧ . . .

. . .
...

∧

Proof Idea: The Circuit C

AND gate for each input and XOR gate
⇒ whenever a gate evaluates wrong:

corresponding AND gate pebbled
⇒ bad configuration

Reduction needs to “place” d−1 pebbles,
and guess output of these gates correctly

For any subset S of d gates: ∃S ′ ⊂ S ,
|S ′| =

√
d : output bits of S ′ independent

⇒ Reduction succeeds w.p. ≤ 1/2
√
d

Add binary tree of AND gates
⇒ constant output 0

⊕ ⊕ ⊕ ⊕ ⊕ ⊕ ⊕

⊕ ⊕ ⊕ ⊕ ⊕ ⊕ ⊕

⊕ ⊕ ⊕ ⊕ ⊕ ⊕ ⊕

⊕ ⊕ ⊕ ⊕ ⊕ ⊕ ⊕

⊕ ⊕ ⊕ ⊕ ⊕ ⊕ ⊕

⊕ ⊕ ⊕ ⊕ ⊕ ⊕ ⊕

x1

∧∧ ∧ ∧ ∧ ∧ ∧

∧ . . .

. . .
...

∧

Proof Idea: The Circuit C

AND gate for each input and XOR gate
⇒ whenever a gate evaluates wrong:

corresponding AND gate pebbled
⇒ bad configuration

Reduction needs to “place” d−1 pebbles,
and guess output of these gates correctly

For any subset S of d gates: ∃S ′ ⊂ S ,
|S ′| =

√
d : output bits of S ′ independent

⇒ Reduction succeeds w.p. ≤ 1/2
√
d

Add binary tree of AND gates
⇒ constant output 0

⊕ ⊕ ⊕ ⊕ ⊕ ⊕ ⊕

⊕ ⊕ ⊕ ⊕ ⊕ ⊕ ⊕

⊕ ⊕ ⊕ ⊕ ⊕ ⊕ ⊕

⊕ ⊕ ⊕ ⊕ ⊕ ⊕ ⊕

⊕ ⊕ ⊕ ⊕ ⊕ ⊕ ⊕

⊕ ⊕ ⊕ ⊕ ⊕ ⊕ ⊕

x1

∧∧ ∧ ∧ ∧ ∧ ∧

∧ . . .

. . .
...

∧

Proof Idea: The Circuit C

AND gate for each input and XOR gate
⇒ whenever a gate evaluates wrong:

corresponding AND gate pebbled
⇒ bad configuration

Reduction needs to “place” d−1 pebbles,
and guess output of these gates correctly

For any subset S of d gates: ∃S ′ ⊂ S ,
|S ′| =

√
d : output bits of S ′ independent

⇒ Reduction succeeds w.p. ≤ 1/2
√
d

Add binary tree of AND gates
⇒ constant output 0

⊕ ⊕ ⊕ ⊕ ⊕ ⊕ ⊕

⊕ ⊕ ⊕ ⊕ ⊕ ⊕ ⊕

⊕ ⊕ ⊕ ⊕ ⊕ ⊕ ⊕

⊕ ⊕ ⊕ ⊕ ⊕ ⊕ ⊕

⊕ ⊕ ⊕ ⊕ ⊕ ⊕ ⊕

⊕ ⊕ ⊕ ⊕ ⊕ ⊕ ⊕

x1

∧∧ ∧ ∧ ∧ ∧ ∧

∧ . . .

. . .
...

∧

Conclusion

SKE ε-IND-CPA secure ⇒ Yao’s scheme ε′-secure

JW16: ε′/ε ≤ 2O(D)

Our work: ε′/ε ≥ 2Ω(
√
D) (D . . . depth of the circuit)

More details and precise proofs: https://eprint.iacr.org/2021/945.

Open Problems:

Is it possible to close the gap?

Can we obtain stronger lower bounds for Yao’s original construction,
where the output mapping is sent in the offline phase?
(AIKW13: lower bound for simulatability for circuits w. large output,
KKP21: upper bound for indistinguishability for small treewidth.)

Can we turn this lower bound into a counter example? Under which
assumptions?

Can we use similar ideas for other constructions of garbling or even
other cryptographic primitives?

https://eprint.iacr.org/2021/945

Conclusion

SKE ε-IND-CPA secure ⇒ Yao’s scheme ε′-secure

JW16: ε′/ε ≤ 2O(D)

Our work: ε′/ε ≥ 2Ω(
√
D) (D . . . depth of the circuit)

More details and precise proofs: https://eprint.iacr.org/2021/945.

Open Problems:

Is it possible to close the gap?

Can we obtain stronger lower bounds for Yao’s original construction,
where the output mapping is sent in the offline phase?
(AIKW13: lower bound for simulatability for circuits w. large output,
KKP21: upper bound for indistinguishability for small treewidth.)

Can we turn this lower bound into a counter example? Under which
assumptions?

Can we use similar ideas for other constructions of garbling or even
other cryptographic primitives?

https://eprint.iacr.org/2021/945

Conclusion

SKE ε-IND-CPA secure ⇒ Yao’s scheme ε′-secure

JW16: ε′/ε ≤ 2O(D)

Our work: ε′/ε ≥ 2Ω(
√
D) (D . . . depth of the circuit)

More details and precise proofs: https://eprint.iacr.org/2021/945.

Open Problems:

Is it possible to close the gap?

Can we obtain stronger lower bounds for Yao’s original construction,
where the output mapping is sent in the offline phase?
(AIKW13: lower bound for simulatability for circuits w. large output,
KKP21: upper bound for indistinguishability for small treewidth.)

Can we turn this lower bound into a counter example? Under which
assumptions?

Can we use similar ideas for other constructions of garbling or even
other cryptographic primitives?

https://eprint.iacr.org/2021/945

Conclusion

SKE ε-IND-CPA secure ⇒ Yao’s scheme ε′-secure

JW16: ε′/ε ≤ 2O(D)

Our work: ε′/ε ≥ 2Ω(
√
D) (D . . . depth of the circuit)

More details and precise proofs: https://eprint.iacr.org/2021/945.

Open Problems:

Is it possible to close the gap?

Can we obtain stronger lower bounds for Yao’s original construction,
where the output mapping is sent in the offline phase?
(AIKW13: lower bound for simulatability for circuits w. large output,
KKP21: upper bound for indistinguishability for small treewidth.)

Can we turn this lower bound into a counter example? Under which
assumptions?

Can we use similar ideas for other constructions of garbling or even
other cryptographic primitives?

https://eprint.iacr.org/2021/945

Conclusion

SKE ε-IND-CPA secure ⇒ Yao’s scheme ε′-secure

JW16: ε′/ε ≤ 2O(D)

Our work: ε′/ε ≥ 2Ω(
√
D) (D . . . depth of the circuit)

More details and precise proofs: https://eprint.iacr.org/2021/945.

Open Problems:

Is it possible to close the gap?

Can we obtain stronger lower bounds for Yao’s original construction,
where the output mapping is sent in the offline phase?
(AIKW13: lower bound for simulatability for circuits w. large output,
KKP21: upper bound for indistinguishability for small treewidth.)

Can we turn this lower bound into a counter example? Under which
assumptions?

Can we use similar ideas for other constructions of garbling or even
other cryptographic primitives?

https://eprint.iacr.org/2021/945

